'On our learning journey together':

Albourne CE Primary School Progression in Calculation

Aims

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Introduction

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation.

Strategies for calculation need to be represented by models and images to support, develop and secure understanding. This, in turn, builds fluency. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the methodology.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

Magnitude of Calculations

Year $\mathbf{1}-\mathrm{U}+\mathrm{U}, \mathrm{U}+\mathrm{TU}$ (numbers up to 20) including adding zero, $\mathrm{U}-\mathrm{U}, \mathrm{TU}-\mathrm{U}$ (numbers up to 20) including subtracting zero, $\mathrm{U} \times \mathrm{U}, \mathrm{U} \div \mathrm{U}$

Year 2-TU + U, TU + multiples of $10, T U+T U, U+U+U, T U-U, T U-$ tens, $T U-T U, T U x U, U \div U$
Year 3 - add numbers with up to three-digits, HTU + multiples of 10, HTU + multiples of 100, subtract numbers up to three-digits, HTU - U, HTU - multiples of 10, HTU - multiples of 100, HTU - HTU, $T U X U, T U \div U$

Year 4-add and subtract numbers with up to four-digits, ThHTU + ThHTU, ThHTU - ThHTU, add and subtract decimals with up to two decimal places in the context of money, multiply three numbers together, $\mathrm{TU} \times \mathrm{U}, \mathrm{HTU} \times \mathrm{U}, \mathrm{TU} \times \mathrm{U}$, multiply by zero and one, $\mathrm{TU} \div \mathrm{U}, \mathrm{HTU} \div \mathrm{U}$

Year 5 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, ThHTU $\times \mathrm{U}$, ThHTU \times TU, HTU \times TU, multiply whole numbers and decimals with up to three-decimal places by 10,100 and 1000 , divide numbers with up to four-digits by U (including remainders as fractions and decimals and rounding according to the context)

Year 6 - add and subtract numbers with more than four-digits, add and subtract decimals with up to three decimal places, multiply numbers with up to four-digits by TU, multiply numbers with up to two-decimal places by a whole number, divide numbers up to four-digits by TU (interpreting remainder according to the context), divide decimals up to two-decimal places by U or TU

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. ... pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects. National Curriculum 2014

Structuring Learning

Children must have concrete experiences that enable them to create visual images. They should be encouraged to articulate their learning and to become pattern spotters.

bead string

L0000000000-00000000000-00000000000-00000000000^ counting stick
place value apparatus

Numicon

number line

Structures of Addition (Haylock and Cockburn 2008)

Children should experience problems with all the different addition structures in a range of practical and relevant contexts e.g. money and measurement.

Aggregation

Union of two sets
How many/much altogether?
The total

Augmentation

Start at and count on Increase by Go up by

Commutative law

Understand addition can be done in any order.
Start with bigger number when counting on
(Explain to children that subtraction does not have this property)

(-00000-00000-00000-00000-00000-00000
is the same as/equal to (=)

Children say which number is one more than a given number
Using quantities and objects, they add two single-digit numbers and count on to find the answer

Year 1

Read, write and interpret mathematical statements involving addition and equals signs
Represent and use number bonds within 20
Add one-digit and two-digit numbers to 20, including zero
Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems such as $7=X-9$
Count to and across 100, forwards and backwards, from any number including 0
Given a number identify one more
Count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Possible Concrete and Visual Representations
Children's recording

r00t0000001-01000010-0000000000-001000000

two mare than thesis
five or two less than form is throw

Use practical resources such as hears, counters. cubes and number lines/hundred gride and progress to a resource such as Numicon to encourage counting in groups rather than ones

I had 7, then I counted on 5 ...
 Numicon icons and stick these in - progressing to recording number sentences alongside

Children may record pictorially progressing to recording number sentences alongside

$$
9+6
$$

$$
\begin{aligned}
& 9 \text { and } 6 \\
& 9+6
\end{aligned}
$$

$9+6$

End of Year Expectations

Year 2

Solve problems with addition：•using concrete objects and pictorial representations，including those involving numbers，quantities and measures．•applying their increasing knowledge of mental and written methods
Show that addition of two numbers can be done in any order（commutative）．（e．g． $5+2+1=1+5+2=1+2+5$ ）
Recall and use addition facts to 20 fluently，and derive and use related facts up to 100.
Add numbers using concrete objects，pictorial representations and mentally，including：•a two digit number and ones，•a two digit number and tens，•two 2 digit numbers， －adding three one digit numbers

Use Numicon，number grids，place value apparatus／Dienes，place value grids，place value cards．Encourage children to partition numbers rather than counting in ones．

Counters．Show that if you swap them over the total is still the same．

Inverse and missing number slides $10-3=$ ？

$$
7+?=10
$$

Children apply，develop and secure their understanding of place value．
Use jottings and record number sentences

3）Tens 10 ，	Unies／Ones ob 2	
覞渞	6	41 +
睍		28
40	1	
＋ 20	＋8	
$=60$	$=9$	$+9=69$

$41+28 \quad 40+20=60 \quad 1+8=9 \quad 60+9=69$
number line to bridge $10 \quad 16+9$

End of Year Expectations

Year 3

Add and subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds

Add numbers with up to three digits, using formal written methods of columnar addition

Estimate the answer to a calculation and use inverse operations to check answers

Solve problems, including missing number problems, using number facts, place value, and more complex addition

Count from 0 in multiples of 4, 8, 50 and 100;
Find 10 or 100 more than a given number

Possible Concrete and Visual Representations

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	2	53	54	55	56	57	58	59	60
61	1	63	63	65	65	66	67	68	69
71	1		74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

100

11
1

Children apply, develop and secure their understanding of place value and begin to record in columns
Manipulatives SHOULD be used alongside alogortihms. Breakdown each stage as below but move through rapidly.

1. Column addition (no regrouping) with up to three digits ($\operatorname{Yr} 3$) and up to four digits (Yr 4)

T U	H T U
$40+1$	$100+40+1$
$+20+8$	$+\underline{100+20+8}$
$60+9$	$=69$

2. Compact (column) recording no regrouping

	HTU	When talking through the calculations, teachers and children should
41	141	use terminology of place value relating to that column e.g. $1+8=9$,
+28	$\underline{+128}$	$40+20+10=70,100+100=200$.

3. Expanded recording with regrouping

T U	H T U
$40+3$	$100+40+3$
$+20+8$	
$\frac{70+1}{10}=71$	$\frac{+100+20+8}{200+70+1}=271$

4. Compact (column) with regrouping

HTU	ThHTU	Ensure children have the		
143	1789	opportunity to add	$£ 7.89$	
+128	409	MORE THAN two	$+\underline{£ 6.42}$	Add decimals in the
$\frac{271}{4}$	$\underline{214}$	numbers with differeing	$\underline{£ 14.31}$	context of money

End of Year Expectations

Year 5

Year 6

Perform mental calculations, including with mixed operations and large numbers
Use their knowledge of the order of operations to carry out calculations involving the four operations
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Solve problems involving addition, subtraction, multiplication and division

- Count forwards or backwards in steps of powers of 10 for any given number up to 1000000
- Add numbers mentally with increasingly large numbers
- Add whole numbers with more than 4 digits, including using formal written methods (columnar addition)
- Using rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Possible Concrete and Visual Representations

Teacher Modelling/Children's Recording

Manipulatives could be used alongside algorithms

Column addition (with regrouping)

ThHTU
5189
$+3128$
8317
11

Addition with decimals up to three decimal places including in different contexts e.g. money and measures

$$
\text { T U } \frac{1}{10} \frac{1}{100} \frac{1}{1000}
$$

51.89
3. 128
$+0.3$
54.318

14
Ensure children have the opportunity to add more than two numbers including decimals with differing numbers of digits

Structures of Subtraction (Haylock and Cockburn 2008)

Children should experience problems with all the different subtraction structures in a range of practical and relevant contexts e.g. money and measurement

Partitioning

Take away
... how many left? How many are not? How many do not?

Comparison

What is the difference?
How many more?
How many less (fewer)?
How much greater?
How much smaller?

Inverse-of-addition

What must be added?
How many (much) more needed?

There are ten pegs on the hanger how many are covered?

Reduction

Start at and reduce by
Count back by
Go down by
v00000-00000-00000-00000-00000-00000

They say which number is one less than a given number.
Using quantities and objects, they subtract two single-digit numbers and count on or back to find the answer

Year 1

Given a number identify one less
Read, write and interpret mathematical statements involving subtraction and equals signs
Represent and use number bonds and related subtraction facts within 20
Subtract one-digit and two-digit numbers to 20, including zero
Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=X-9$
Possible Concrete and Visual Representations
Children's Recording

0	1	2	3	4	5	6	7	0	0	4

$\begin{array}{lllllllllll}5 & -3 & & & & & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

$000000000-00000000-0000000000-00000000 \mathrm{y}$

Use practical resources such as bears, counters, cubes and number lines/hundred grids and progress to a resource such as Numicon to encourage counting back in groups rather than ones

Children may begin recording pictorially progressing to recording number sentences alongside

Children could use printed Numicon icons and stick these in, again progressing to recording number sentences alongside

Subtraction

End of Year Expectations

Year 2

Solve problems subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures and applying their increasing knowledge of mental and written methods

Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 .
Subtract numbers using concrete objects, pictorial representations and mentally, including: a two digit number and ones, a two digit number and tens, two 2 digit numbers Show that subtraction of one number from another cannot be done in any order.(commutative)

Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
Possible Concrete and Visual Representations

Children's Recording

Children apply, develop and secure their understanding of place value and begin to record using jottings, numberlines and number sentences

Use numberlines to count on or count back depending on numbers e.g.

18-2=16 count back
-2

18-16 = 2 count on

End of Year Expectations

Year 3

Find 10 or 100 less than a given number
Subtract numbers mentally, including: a three-digit number and ones, a three-digit number and tens, a three-digit number and hundreds
Subtract numbers with up to three digits, using formal written methods of columnar subtraction Estimate the answer to a calculation and use inverse operations to check answers

Solve problems, including missing number problems, using number facts, place value, and more complex subtraction

Year 4

Find 1000 more or less than a given number
Subtract numbers with up to 4 digits using the formal written methods of columnar subtraction where appropriate
Estimate and use inverse operations to check answers to a calculation Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Possible Concrete and Visual Representations

$10000000000-000000000-0000000000-0000000000 v$

1. Expanded column addition (no regrouping) with up to three digits (Yr 3) and up to four digits (Yr 4)

$68-23$	$148-121$
$T \quad U$	$H \quad T \quad U$
$60+8$	$100+40+8$
$-20+3$	
$-40+5$	$-\frac{100+20+1}{0+20+7}=27$

When talking through the calculations, teachers and children should use terminology of place value relating to that column e.g. $1+8=9$,

$$
40+20+10=70,100+100=200
$$

2. Compact (column) recording no regrouping

H T	HTU
68	148
-23	-121

$45 \quad \underset{ }{27}$
3. Expanded recording with regrouping

63-28	243-128
$T \quad U$	$\begin{array}{lll}H & \text { T }\end{array}$
${ }^{50} 60+{ }^{10+} 3$	$200+{ }^{30} 40+{ }^{10+} 3$
$20+8$	$-100+20+8$
$30+5=35$	$100+10+5=115$

4. Compact (column) with regrouping

$723-317$
H T U
$7^{1} Z^{1} 3$
-317
406

Subtract decimals in the context of money

Ensure children can solve caluclations where zero is the place holder

End of Year Expectations

Year 5

Year 6

- Subtract numbers mentally with increasingly large numbers
- Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)
- Using rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- Use their knowledge of the order of operations to carry out calculations involving the four operations
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- Solve problems involving addition, subtraction, multiplication and division
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Possible Concrete and Visual Representations

$$
0000-00000-0000-00000-0000-00000 \mathrm{U}
$$

Cuisenaire

Bar Model

Teacher Modelling/Children's Recording

Manipulatives could be used alongside algorithms

1. Column subtraction (no regrouping)
Tth Th H TU

13548
-12128
When talking through the calculations, teachers and children should use terminology of place value relating to that column e.g. $1+8=9$, $40+20+10=70,100+100=200$.
$\begin{array}{r}1420 \\ \hline\end{array}$
2. Column subtraction (with regrouping)
Tth Th H T U
Ensure children can solve calculations where zero is a place holder
$\begin{array}{r}-1 \quad 2 \quad 6 \quad 7 \quad 8 \\ \hline\end{array}$
$\begin{array}{r}7 \quad 4 \quad 5 \\ \hline\end{array}$
Subtraction with decimals up to three decimal places including in different contexts e.g. money and measures
3. Column subtraction (no regrouping)

TU $\frac{1}{10100}$
1.89
1.21
0.27

> Ensure children have the opportunity to add more than two numbers
4. Column subtraction (with regrouping)

TU ${ }_{1}^{1} \frac{1}{10}$
10100
${ }^{6} 7 \cdot{ }^{11} z^{13}$
1.21
3. 56

Structures of Multiplication (Haylock and Cockburn 2008)

Children should experience problems with all the different multiplication structures in a range of practical and relevant contexts e.g. money and measurement

Repeated addition

So many lots (sets) of so many
How many (how much) altogether
Per, each

Scaling

Scaling, scale factor Doubling, trebling
So many times bigger than (longer than, heavier than, and so on)
So many times as much as (or as many as)

Commutative law

Understand multiplication can be done in any order
(Explain to children that division does not have this property)
$\mathbf{a} \mathbf{x} \mathbf{b}$ and $\mathbf{b} \mathbf{x}$ a are equal

4×2 is the same as/equal to 2×4

End of Year Expectations

Reception

They solve problems, including doubling and halving

Year 1
Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher Count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

Possible Concrete and Visual Representations

Children's Recording

Practical only e.g. link to small world
Using concrete objects, pictorial representations and arrays with the support of an adult - take photographs/draw pictures - if using Numicon small icons could be stuck in

track with cuisenaire

End of Year Expectations

Year 2

Recall and use multiplication facts for the 2,5,and 10 multiplication tables, relate to grouping, including recognising odd and even numbers

Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication and equals signs
Show that multiplication of two numbers can be done in any order (commutative)
Solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in context
Count in steps of 2,3 , and 5 from 0 and in tens from any number, forwards and backwards

Possible Concerete and Visual Representations

Repeated addition becomes multiplication

$2+2+2+2=4 \times 2$
two add two add two add two add two = four lots of two

 porpicnon

$\begin{array}{llllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$
41424344454647484950
51525354555657585960 61626364656667686970 71727374757677787980 $\begin{array}{llllllllllllllll}81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90\end{array}$ 919293949596979899100 wn

Teacher Modelling/Children's Recording

Record practical work as number sentences

Partitioning for larger numbers
11×3
$10 \times 3=30$
$1 \times 3=3$
$30+3=33$

End of Year Expectations

Year 3

Year 4

Count from 0 in multiples of $4,8,50$ and 100;

Recall and use multiplication facts for the 3, 4 and 8 multiplication tables
Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods

Solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects

Count in multiples of 6, 7, 9, 25 and 1000
Recall multiplication and division facts for multiplication tables up to 12×12
Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers

Recognise and use factor pairs and commutativity in mental calculations
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout
Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Possible Concrete and Visual Representations

End of Year Expectations

Year 5

- Multiply numbers mentally drawing upon known facts
- Multiply whole numbers and those involving decimals by 10, 100 and 1000
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- Solve problems involving multiplication

Possible Concrete and Visual Representations

Children might use manipulatives alongside algorithms

Long multiplication

Th	H	T	U
1	3	2	4
X		2	6
7	9	4	4
1	1	z	

T U ${ }_{\text {l }}^{\frac{1}{10}} \stackrel{\frac{1}{100}}{ }$	
	3. 24
$\times 26$	
1	9.4 4
	1 z

$$
+\begin{array}{r}
64.80 \\
84.24 \\
\hline
\end{array}
$$

Structures for Division (Haylock and Cockburn 2008)

Children should experience problems with the different division structures in a range of practical and relevant contexts e.g. money and measurement

Ratio structure
comparison inverse of scaling structure of multiplication scale factor (decrease)

Barney earns three times more than Fred. If Barney earns $£ 900$ how much does Fred earn?

Jo's journey to school is three times as long as Ella's. If Jo walks to school in 30 minutes how long does it take Ella?

End of Year Expectations

Reception

- They solve problems, including halving and sharing

Year 1

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Possible Concrete and Visual Representations

Children's Recording
How many groups of two?

straw bundles

How
many
groups
of two?

Numicon and counter arrays

flexible array

Practical only e.g. link to small world
Using concrete objects, pictorial representations and arrays with the support of an adult - take photographs/draw pictures - if using Numicon small icons could be stuck in

End of Year Expectations

Year 2

- Calculate mathematical statements for division within the multiplication tables and write them using the division and equals signs
- Recall and use multiplication and division facts for the 2,5 , and 10 multiplication tables, relate to grouping and sharing
- Solve problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in context

How many groups of two?

straw bundles

- -9

How
many
groups of two?

Numicon and counter arrays

flexible array

Record as number sentences using \div and $=$

$$
8 \div 4
$$

Eight divided into four equal
groups = two in each group

$$
8 \div 4=2
$$

$$
\text { "II }=
$$

divided into
four equal
groups of
two or two
equal
groups of
four

End of Year Expectations

Year 2

- Calculate mathematical statements for division within the multiplication tables and write them using the division and equals signs
- Recall and use multiplication and division facts for the 2,5 , and 10 multiplication tables, relate to grouping and sharing
- Solve problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in context

How many groups of two?

straw bundles

Numicon and counter arrays

flexible array

Record as number sentences using \div and $=$

$$
8 \div 4
$$

Eight divided into four equal
groups = two in each group

$\square \square$ Eight can be divided into four equal groups of
two or two
equal groups of four

End of Year Expectations

Year 3

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- Write and calculate mathematical statements for division using the multiplication tables that they know
- Solve problems, including missing number problems, involving division

Possible Concrete and Visual Representations
represent scaling

Children should use manipulatives alongside algorithms

Year 4

- Recall multiplication and division facts for multiplication tables up to 12×12
- Use place value, known and derived facts to divide mentally, including: dividing by 1

Cuisenaire to statue is 3 metres

$$
\begin{aligned}
& 7 \times 6=42 \\
& 6 \times 7=42
\end{aligned}
$$

$$
42 \div 6=7
$$

$$
42 \div 7=6
$$

End of Year Expectations

Year 5

- Divide numbers mentally drawing upon known facts
- Divide whole numbers and those involving decimals by 10,100 and 1000
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign

Year 6

- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Solve problems involving addition, subtraction, multiplication and division

Possible Concrete and Visual Representations

bar models
The power of the place value: counters for larger numbers

The array is an image for division too

$120 \div 3$

